Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377989

RESUMO

Defects in tRNA biogenesis are associated with multiple neurological disorders, yet our understanding of these diseases has been hampered by an inability to determine tRNA expression in individual cell types within a complex tissue. Here, we developed a mouse model in which RNA polymerase III is conditionally epitope tagged in a Cre-dependent manner, allowing us to accurately profile tRNA expression in any cell type in vivo. We investigated tRNA expression in diverse nervous system cell types, revealing dramatic heterogeneity in the expression of tRNA genes between populations. We found that while maintenance of levels of tRNA isoacceptor families is critical for cellular homeostasis, neurons are differentially vulnerable to insults to distinct tRNA isoacceptor families. Cell-type-specific translatome analysis suggests that the balance between tRNA availability and codon demand may underlie such differential resilience. Our work provides a platform for investigating the complexities of mRNA translation and tRNA biology in the brain.

2.
Mol Neurobiol ; 58(6): 2574-2589, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33471287

RESUMO

Cell adhesion molecules (CAMs) are key players in the formation of neural circuits during development. The γ-protocadherins (γ-Pcdhs), a family of 22 CAMs encoded by the Pcdhg gene cluster, are known to play important roles in dendrite arborization, axon targeting, and synapse development. We showed previously that multiple γ-Pcdhs interact physically with the autism-associated CAM neuroligin-1, and inhibit the latter's ability to promote excitatory synapse maturation. Here, we show that γ-Pcdhs can also interact physically with the related neuroligin-2, and inhibit this CAM's ability to promote inhibitory synapse development. In an artificial synapse assay, γ-Pcdhs co-expressed with neuroligin-2 in non-neuronal cells reduce inhibitory presynaptic maturation in contacting hippocampal axons. Mice lacking the γ-Pcdhs from the forebrain (including the cortex, the hippocampus, and portions of the amygdala) exhibit increased inhibitory synapse density and increased co-localization of neuroligin-2 with inhibitory postsynaptic markers in vivo. These Pcdhg mutants also exhibit defective social affiliation and an anxiety-like phenotype in behavioral assays. Together, these results suggest that γ-Pcdhs negatively regulate neuroligins to limit synapse density in a manner that is important for normal behavior.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Interação Social , Sinapses/metabolismo , Animais , Axônios/metabolismo , Comportamento Animal , Células COS , Proteínas Relacionadas a Caderinas , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Prosencéfalo/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
3.
Cell Rep ; 18(11): 2702-2714, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297673

RESUMO

The 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules are critical for the elaboration of complex dendritic arbors in the cerebral cortex. Here, we provide evidence that the γ-Pcdhs negatively regulate synapse development by inhibiting the postsynaptic cell adhesion molecule, neuroligin-1 (Nlg1). Mice lacking all γ-Pcdhs in the forebrain exhibit significantly increased dendritic spine density in vivo, while spine density is significantly decreased in mice overexpressing one of the 22 γ-Pcdh isoforms. Co-expression of γ-Pcdhs inhibits the ability of Nlg1 to increase spine density and to induce presynaptic differentiation in hippocampal neurons in vitro. The γ-Pcdhs physically interact in cis with Nlg1 both in vitro and in vivo, and we present evidence that this disrupts Nlg1 binding to its presynaptic partner neurexin1ß. Together with prior work, these data identify a mechanism through which γ-Pcdhs could coordinate dendrite arbor growth and complexity with spine maturation in the developing brain.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Espinhas Dendríticas/metabolismo , Neurogênese , Animais , Células COS , Proteínas Relacionadas a Caderinas , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica
4.
Cell Rep ; 15(5): 1037-1050, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27117416

RESUMO

Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.


Assuntos
Caderinas/metabolismo , Comunicação Celular , Dendritos/metabolismo , Animais , Astrócitos/metabolismo , Proteínas Relacionadas a Caderinas , Córtex Cerebral/metabolismo , Camundongos Transgênicos , Ligação Proteica , Isoformas de Proteínas/metabolismo
5.
Cell Adh Migr ; 9(3): 214-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25869446

RESUMO

The proper formation of dendritic arbors is a critical step in neural circuit formation, and as such defects in arborization are associated with a variety of neurodevelopmental disorders. Among the best gene candidates are those encoding cell adhesion molecules, including members of the diverse cadherin superfamily characterized by distinctive, repeated adhesive domains in their extracellular regions. Protocadherins (Pcdhs) make up the largest group within this superfamily, encompassing over 80 genes, including the ∼60 genes of the α-, ß-, and γ-Pcdh gene clusters and the non-clustered δ-Pcdh genes. An additional group includes the atypical cadherin genes encoding the giant Fat and Dachsous proteins and the 7-transmembrane cadherins. In this review we highlight the many roles that Pcdhs and atypical cadherins have been demonstrated to play in dendritogenesis, dendrite arborization, and dendritic spine regulation. Together, the published studies we discuss implicate these members of the cadherin superfamily as key regulators of dendrite development and function, and as potential therapeutic targets for future interventions in neurodevelopmental disorders.


Assuntos
Caderinas/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Animais , Caderinas/classificação , Caderinas/genética , Moléculas de Adesão Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...